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Solutions to the equations of Morton et al. (Proc. R. Soc. Lond. A, vol. 234, 1956,
p. 1) describing turbulent plumes and jets rising in uniformly stratified environments
are identified for the first time.

The evolution of plumes and jets with sources whose driving flux decreases with
time is considered in a stratified environment. Numerical calculations indicate that
as the source buoyancy flux, for a Boussinesq plume (or source momentum flux, for
a Boussinesq jet), is decreased, a transitional narrowing region with characteristic
spreading angle tan−1(2α/3) is formed, where α is the well-known entrainment coeffi-
cient. The plume or jet dynamics are modelled well by a separable solution to the
governing equations which predicts stalling in the plume at a critical stall time ts = π/N

and stalling in the jet at a critical stall time ts = π/(2N), where N is the buoyancy
frequency of the ambient background stratification. This stall time is independent of
the driving source conditions, a prediction which is verified by numerical solution of
the underlying evolution equations.

1. Introduction
Plumes and jets are ubiquitous throughout a large range of flows. Their abundance

in geophysical flows is well-known and examples range from large-scale meteorological
plumes rising over the desert to explosive volcanic eruptions or saline plumes descend-
ing from melting sea ice. In most large-scale geophysical flows, both the stratification
of the ambient background fluid and the temporally varying nature of the source
conditions are of crucial importance.

Plumes and jets with temporally varying source conditions in a homogeneous
environment were considered in Scase et al. (2006) (referred to herein as S06),
motivated by the very successful and popular earlier work of Morton, Taylor & Turner
(1956), Zeldovich (1937) and more recently Hunt et al. (2003). In S06 it was demon-
strated that when the driving source conditions (i.e. source of buoyancy or momentum)
of a given plume or jet are reduced in an unstratified ambient, a narrowing region
is found. This narrowing region is described well by a class of separable solutions
to the governing equations. However, the identified narrowing region had a non-zero
minimum radius away from the origin and so no pinch-off into separate puffs was
predicted. This demonstrated the robust nature of plumes in unstratified ambient
fluids to changes in their source conditions.

In the present paper we shall focus on Boussinesq plumes and jets only. We begin in
§ 2 by briefly reviewing the time-dependent governing equations in a stratified ambient
background fluid. In the conventional time-independent case with constant buoyancy
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frequency we derive previously overlooked analytical series solutions which predict
well the maximum height of rise of both plumes and jets, i.e. the height at which
the momentum flux first drops to zero. We do not consider the final height to which
the plume or jet collapses. This final collapse height is always below the maximum
height of rise and is the height at which the fluid is neutrally buoyant. We restrict
our analysis to the maximum rise height since the complicated entrainment processes
that occur during the collapse phase between the maximum rise height and the final
collapse height are beyond the scope of our model equations (see Bloomfield & Kerr
2000 for further discussion).

In § 3, we investigate the extent to which reduction in source strength affects the
plume evolution and height of rise. We calculate numerically the temporal evolution
of the bulk properties of a Boussinesq plume rising through a stratification where
the plume is subject to a reduction in its driving buoyancy flux, using the equations
derived in S06 and the steady plume solution derived in § 2 as the appropriate initial
condition. We use the results of these numerical calculations to motivate the theoretical
analysis of § 4, where we identify a class of attracting separable solutions, equivalent
to those found in homogeneous ambient fluids in S06. These solutions provide an
intermediate asymptotic for all transient reductions in source strength, providing the
source strength is reduced rapidly enough. We demonstrate close agreement between
our theory and the numerical solutions, and in § 5 we draw our conclusions.

2. The system of governing equations
We consider a stratified ambient background fluid with buoyancy frequency, N ,

defined by ρ∞(z) = ρ0 exp{−N2z/g}, where ρ∞(z) is the density of the ambient fluid,
ρ0 is a reference density equal to the density of the ambient fluid at the origin, z is
the vertical distance from the origin and g is the acceleration due to gravity. The
Boussinesq system of equations describing the system, derived in S06, is
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The mass flux, buoyancy flux and momentum flux are defined respectively as Q =
b2wρ, M = b2w2ρ, F = b2wg, where b is the plume radius, w is the centreline velocity
and ρ is the plume density. Equations (2.1) are derived under the assumptions that
the plume has no radial variations in either velocity or density (i.e. they have top-
hat profiles) and that entrainment into the plume can be modelled by a constant
entrainment coefficient α (Morton et al. 1956; S06). We recall the steady solutions to
the above system (2.1), with N =0 (i.e. unstratified background fluid), due to Morton
et al. (1956):
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It is well-known that both plumes and jets rising through a stratification with
constant buoyancy frequency N have finite maximum rise heights, zhp and zhj respec-
tively, where the vertical velocity first decreases to zero, with (see e.g. Turner 1973)

zhp ≈ 2.572zcp, zhj ≈ 1.429zcj , where zcp =

(
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4α2ρ0N3

)1/4

, zcj

(
M0

4α2ρ0N2

)1/4

.

(2.3)
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Importantly, the finite maximum rise heights scale with the quarter-power of the source
buoyancy flux and momentum flux respectively (the constants of proportionality have
been determined numerically).

2.1. Steady Boussinesq plume

We begin by considering the so-called steady ‘pure’ point-source plume with the
various fluxes functions of position, z, alone. We take a constant source buoyancy
flux F0 > 0 and hence we have the boundary conditions Q(0) = M(0) = 0, F (0) = F0.
Dividing the time-independent forms of equations (2.1b) and (2.1c) and integrating the
resulting equation for dM/dF given the pure plume boundary conditions we obtain

M =
1

N

(
F 2

0 − F 2
)1/2

. (2.4)

This demonstrates that |F | � F0 for all valid z, i.e. that the maximum buoyancy flux
for a plume must occur at its source, as expected. Combining the time-independent
form of (2.1a) and (2.4) then yields

d2F

dz2
= −2αρ

1/2
0 N3/2

(
F 2

0 − F 2
)1/4

. (2.5)

Introducing the scaling F = F0F̂ and z = zcpẑ allows (2.5) to be written as

d2F̂

dẑ2
= −(1 − F̂ 2)1/4. (2.6)

As zcp → ∞, the steady unstratified solutions (2.2) are recovered. All other quantities

may be derived immediately once F̂ is known.
Guided by the observation that if N � 1 then Q ∝ z5/3 and the steady form of

(2.1c) implies that the first-order correction to F is of the functional form z8/3, we
seek a solution of (2.6) of the form

F̂ (ẑ) =

∞∑
n=0

anẑ
8n/3, (2.7)

together with the boundary conditions that F̂ (0) = 1 and dF̂ /dẑ|z=0 = 0 (consistent
with Q(0) = 0). It can be seen that if (2.6) is to contain a non-trivial plume-like
solution then there must be at least two distinct solutions satisfying the nonlinear
second-order differential equation (2.6) and the associated boundary conditions, since
F̂ = 1 clearly satisfies all conditions and the governing equation.

By ensuring that the coefficient of each power of ẑ balances when each side of (2.6)
is raised to the fourth power, we obtain
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)4
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and for n � 2
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where c(j,k) = (8/9)2j (8j − 3)(k − j )[8(k − j ) − 3].
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It can be seen from the equation for a1 (2.8) that indeed there are two solutions
of this form for the governing equation (2.6) with the required boundary conditions,
given by the choice of either a1 = 0, which leads to F̂ =1, or a1 = −(9/20)4/3/2, which
leads to the desired non-trivial plume solution. The resulting series appears, from
numerical calculation, to converge rapidly.

2.2. Steady Boussinesq forced plume

We now turn to the case of a steady forced point-source plume, as originally con-
sidered by Morton (1959), where Q(0) = 0, M(0) = M0 and F (0) =F0 for some initial
momentum and buoyancy fluxes M0 �= 0 and F0 respectively. The analogue of (2.4) is
now

M =
1

N

{[
N2M2

0 + F 2
0

]
− F 2

}1/2
, (2.10)

and we introduce non-dimensional quantities given by F = {N2M2
0 + F 2

0 }1/2F̂ and
z = zcj [{N2M2

0 + F 2
0 }1/2/(NM0)]

1/4ẑ, thus recovering (2.6) together with the boundary

conditions F̂ (0) = F0/[N
2M2

0 + F 2
0 ]1/2, dF̂ /dẑ|ẑ=0 = 0. We define a quantity 0 � θ < 1

such that F̂ (0) = θ . The parameter θ is a measure of relative importance of source
buoyancy and source momentum, with θ = 0 being a pure jet and θ = 1 being a pure
plume. The solution in § 2.1 corresponds to θ = 1, so we now assume that 0 � θ < 1.

As in the previous section, we note that for a steady jet in an unstratified ambient
fluid, Q ∝ z, hence a first-order correction to F for N � 1 would have functional
form z2; thus we now seek a solution of the form

F̂ (ẑ) =

∞∑
n=0

anẑ
2n. (2.11)

Substitution of (2.11) into (2.6) and equating all powers of ẑ gives
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, (2.12)

with for n � 2
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where c(j,k) = 4j (2j − 1)(k − j )[2(k − j ) − 1].
When θ = 0, we find a2n ≡ 0 and numerical calculation of the ratio a2n+3zhj/a2n+1

indicates again that the series converges rapidly. However, the series is not appropriate
for large values of θ and in the limiting case of the pure plume, θ = 1, the series solution
(2.11)–(2.13) diverges for all positive ẑ, thus we are unable to recover (2.7)–(2.9).

Figure 1(a) is a comparison of the analytical solutions of (2.7)–(2.9) and (2.11)–
(2.13) (solid) compared with numerical (dashed) solutions. The figure demonstrates
that even though only five terms of the series for F̂ have been used, the solution
has converged quickly to the numerical solution. The theoretical solutions presented,
using only five terms of the series solution, are indistinguishable from plots where
150 terms of the series solution have been used.

Taking the leading two terms of both (2.7) and (2.11) allows us to predict approxi-
mately the rise height of a pure plume, zhp , and the rise height of a forced plume, zhj ,
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Figure 1. (a) A comparison of numerical solution (dashed) and the first 5 terms of the
analytical solution of the steady stratified Boussinesq plume (solid bold) and pure jet (θ = 0)
(solid) equations. The unstratified solutions b = 6αz/5 (dotted bold) and b = 2αz (dotted) are
also shown. (b) A comparison of numerically calculated (solid) rise heights, zhj , for a forced
plume as θ varies and theoretical predictions (dashed) (2.14). For small to moderate values
of θ the theoretical results agree well with the numerical results. However for θ � 0.9391
(dotted), zhj is greater than the numerically calculated rise height for a pure plume source,
θ = 1 (dot-dashed).
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respectively. Numerical evaluation of the rise heights in (2.14) yields zhp ∼ 2.507zcp ,
and zhj ∼ 1.414zcj (for θ = 0) respectively, which are in good agreement with previous
studies (cf. (2.3) where the solutions were calculated numerically).

Figure 1(b) is a comparison of numerically calculated rise heights (solid line) and
the expression given in (2.14) (dashed line) for 0 � θ < 1. The graph demonstrates that
the theoretical predictions based on only the first two terms of the series (2.11) agree
well with the numerical prediction for small to moderate values of θ . For larger values
of θ , zhj over-predicts the rise height, indeed exceeding the numerically calculated rise
height of a pure plume source (θ =1) when θ � 0.9391.

3. Numerical solutions
It was shown by Morton et al. (1956) that a turbulent pure point-source plume

spreads as a cone of semi-angle tan−1(6α/5), independent of the strength of the driving
source buoyancy flux. In S06 it was shown that a plume, or jet, propagating through
an unstratified ambient fluid, which is subject to a reduction in source strength,
develops a narrowing region which approaches a cone with semi-angle tan−1(2α/3).
We now investigate the behaviour of such a flow when the ambient fluid is stratified.
The numerical scheme employed is a simple extension of that presented in Appendix
A of S06.†

† Equation (A2) of S06 is solved with an additional term, −41/3(9/10)4/3(z/zcp)8/3M̃ , in the third
row of the second matrix on the right hand side.
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Figure 2. A numerical experiment showing the development of the characteristic radius for
an established plume rising through a uniformly stratified ambient fluid (N = 1 s−1), which
has its driving source buoyancy flux reduced by 60%. In the simulation shown α = 1. The
initial plume profile is shown as a solid (thin) line, the narrowing region defined by b = 2αz/3
is shown dotted. The solid bold line in (a) shows the profile at t = 2π/(5N ) s and in (b) at
t = π/N s.

We consider a plume with pure plume source conditions that has been established
for all negative time, such that the quantities Q, M and F are as given in § 2.1. At
t = 0 the source buoyancy flux is reduced from F0 to 0 � F1 <F0, hence the boundary
condition on the buoyancy flux is given by F (0, t) =F0 + (F1 − F0)H (t), where H is
the Heaviside step function.

Figure 2 shows the temporally evolving flow of a plume due to the reduction in the
driving buoyancy flux. ‘New’ plume fluid has a lower buoyancy flux associated with
it than the ‘old’ plume fluid and so must have a smaller maximum rise height (2.3).
Near the origin, both old and new plume fluid rise as if in an unstratified ambient
with characteristic radius b(z, t) ≈ 6αz/5. It can be seen that for all times shown, the
plume has three characteristic regions, just as in the unstratified case. Near the source,
the plume behaves as if it has risen from a source with the final reduced buoyancy
flux, while at greater heights the plume behaves as if it has risen from a source with
the initial buoyancy flux. These two regions are connected by a transitional region,
where the spreading angle is markedly reduced, and appears to approach tan−1(2α/3),
just as in the unstratified case considered previously (S06).

4. Time-dependent separable solutions
4.1. Plume solutions

Motivated by the behaviour shown in figure 2, we seek a separable solution to (2.1)
where

b2 =
Q2

Mρ0

=
4α2z2

9
. (4.1)

From (2.1a) it follows that ∂Q/∂z = 3Q/z and hence
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9
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9
z4q1(t)

2, (4.2)
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where q1(t) is a function of t alone. Equation (2.1b) implies that

F =
4α2ρ0

9
z4

[
dq1

dt
+ 4q2

1

]
q1, (4.3)

and so substitution into (2.1c), implies that q1(t) satisfies

d2q1

dt2
+ 12q1

dq1

dt
+ 16q3

1 + N2q1 = 0. (4.4)

This equation has stationary points for q1 = 0, the trivial solution (which does not
satisfy the boundary conditions), and also q2

1 = −N2/16, which has no real solutions
unless N2 < 0, i.e. unless we have a statically unstable background stratification.
Letting N2 = −N2

0 < 0, a constant, shows that the stationary point is q1 = N0/4 and
this yields b = 2αz/3, w = N0z/4, i.e. the steady solutions identified by Batchelor
(1954), and discussed in more detail in Caulfield & Woods (1998) and S06.

Any useful time-dependent solution of (4.4) must approach the time-dependent simi-
larity solutions in an unstratified environment (cf. S06) as N → 0. An exact solution to
(4.4), which tends to the correct functional limit as N → 0, is q1(t) = (N/4) cot[(Nt)/2],
which yields
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Nα2ρ0

9
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}
. (4.5c)

The corresponding plume width, velocity and buoyancy force are therefore given by

b =
2αz

3
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Nz

4
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Nt
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)
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N2z

8

[
cot2

(
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2

)
− 1

]
. (4.6)

When t = π/N , w = 0 for all z where the above solution (4.5) is realized, and so
we expect a region of the plume with non-zero vertical extent to stall at this time.
Furthermore, at t = π/(2N), F = 0 and g′ = 0 over a region of the plume, i.e. this
region does not experience any buoyancy forces acting upon it and propagates purely
under its own momentum.

This argument is perhaps more clearly described in terms of the ‘laziness parameter’,
Γ (z, t) (e.g. Morton 1959; Hunt & Kaye 2005), taking care to note that Γ (z, t) is
not related to θ , defined in § 2.2. This non-dimensional parameter is defined, in the
present notation, as

Γ (z, t) =
5

8αρ
1/2
0

Q2F

M5/2
, (4.7)

and is a measure of how plume-like or jet-like the flow is. In a pure plume rising
through an unstratified ambient Γ (z, t) = 1 everywhere, independent of z, while for
a pure jet rising through an unstratified ambient Γ (z, t) = 0 everywhere. For a pure
plume rising through a stratified environment, as z → zhp , the maximum rise height
of the plume, Γ (z) → −∞. In the narrowing region of a plume rising through an
unstratified ambient, it was shown in S06 that Γ (z, t) = 5/6. For the solution (4.5),
we find

Γ (z, t) =
5

6

[
1 − tan2

(
Nt

2

)]
. (4.8)
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It follows therefore that initially, Γ (z, t) = 5/6, i.e. the narrowing region behaves as
if the background fluid were unstratified, which we observe for a steady plume too
(b(z) ≈ 6αz/5 near the origin). However, Γ (z, t) decreases and at t = π/(2N), Γ (z, t) = 0
and the narrowing region becomes jet-like. This region experiences no buoyancy forces
and its motion is due to its momentum alone. As t → π/N , Γ (z, t) → −∞ and the
narrowing region has equivalent laziness to a plume as it approaches its maximum
rise height. Therefore over the first half of its evolution in time, this solution at a
given height, z, loses its initial buoyancy. Over the second half of its evolution it
loses its momentum, and hence stalls, as the buoyancy force now acts to decelerate
the plume since it is dense relative to its surroundings. Interestingly, the stall time is
independent of the initial source conditions.

4.2. Jet solutions

Since the spreading angle of the jet is observed to reduce to tan−1(2α/3), we follow
the same procedure described above to attain (4.4). The exact solution of (4.4), which
tends to the jet solutions identified in § 3.6 of S06 in the limit N → 0, is

q1(t) =
N

4
cot(Nt). (4.9)

This yields a mass flux, momentum flux and buoyancy flux given by

Q =
Nα2ρ0

9
z3 cot(Nt), M =

N2α2ρ0

36
z4 cot2(Nt), F = −N3α2ρ0

36
z4 cot(Nt), (4.10)

with corresponding characteristic jet radius, velocity and reduced gravity given by

b =
2αz

3
, w =

Nz

4
cot(Nt), g′ = −N2z

4
. (4.11)

Hence, when t = π/(2N), w = 0 for all z where the above solution (4.10) is realized,
and so we expect a region of the jet with non-zero vertical extent to stall at this
time. It is unsurprising that this is a shorter time than for the plume, as the fluid
is never buoyant compared to the ambient. It should be noted that although the
reduced gravity in this case is independent of time, the position of the narrowing
region changes with time and so it should not be inferred that the narrowing region
has a steady reduced gravity.

For the solution given by (4.10), we have a laziness parameter (4.7) defined by

Γ (z, t) = − 5
3
tan2(Nt). (4.12)

Hence, initially the narrowing region behaves as a pure jet, but as t → π/(2N), is
forced to stall with Γ (z, t) → −∞.

4.3. Comparison with numerical method

Figure 3 is a snapshot of the evolution of the buoyancy flux, F , at time t = π/(2N)
(bold) and t = π/(4N) (solid), for the case α = 1, N = 1 s−1. Initially, at t =0, the
buoyancy flux, F , lies on the dashed curve. The buoyancy flux at the origin is reduced
from F0 = 1 kg m s−3 to F1 = 0.4 kgm s−3. Therefore the final curve that F must lie
upon is the initial dashed curve rescaled in the F -direction by a factor of 0.4 and
rescaled in the z-direction by a factor of 0.41/4 (see (2.3)), whose profile is shown as a
dot-dashed line. At the time shown, the upper part of the plume remains unaffected
by changes at the source, since the information has not reached that far up the
plume. The lower part of the plume has adjusted to the new buoyancy flux at the
origin and is lying on the dot-dashed curve. At time t = π/ (2N), the narrowing region
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Figure 3. The buoyancy flux, F , at time t = π/(2N ) s (bold) and at time t = π/(4N ) s (solid)
with N = 1 s−1 and α = 1 for a plume with buoyancy flux reduced from F0 = 1 kgm s−3 to
F0 = 0.4 kg m s−3 at t =0 s. The initial buoyancy flux profile is shown dashed, the final profile
is shown dot-dashed. At time t = π/(2N ) s, the solution in (4.5) is in good agreement with
the numerical solution shown (bold). A portion of the plume, corresponding to the narrowing
region, has zero buoyancy flux (F = 0) and can only propagate as a result of its momentum.
The minimum final buoyancy attained at the maximum of rise for the final reduced source
buoyancy flux F = −0.4 kgm s−3 is shown as a dotted vertical line.

corresponds to the vertical section joining the upper and lower parts of the bold line.
The vertical dotted line F =0 is the solution (4.5) evaluated at t = π/(2N) s. It can be
seen that the narrowing region agrees well with the predicted separable solution (4.5)
and, in particular, that the buoyancy flux has dropped very close to zero over a finite
vertical region (i.e. the density in the plume decreases linearly with height, exactly in
step with the density in the ambient). Furthermore, the numerically calculated time
scale for the plume to reach its maximum height of rise, ts = 3.04 s, agrees very well
with that predicted by the separable solution, ts = 3.14 s.

5. Conclusions
We demonstrated in § 2 that an analytical series solution can be constructed for

continuous sources of buoyancy or momentum in a uniformly stratified environment,
and that using only a few terms of the series yields excellent predictions for both
the vertical properties and the maximum rise height of the plume fluid. If the source
conditions weaken with time, it is also possible to establish the time at which the
plume fluid stalls, i.e. ts = π/N (for a pure plume source) or ts = π/(2N) (for a pure jet
source). As in the unstratified case (S06), the reduction of driving source conditions
for either a plume or a jet results in a narrowing region propagating up the plume or
jet with characteristic radius given by b = 2αz/3, associated with the time-dependent
separable solution.

Reducing the source buoyancy flux (or momentum flux) inevitably reduces the
maximum height of rise. However, since the flow is attracted to a separable solution,
the time of collapse can be identified and predicted by the separable solution. When
the decrease in buoyancy flux is instantaneous, as in § 3, it appears that the plume
fluid loses its buoyancy over a finite region after a time π/(2N), i.e. precisely half the
time until collapse. In the second half of its temporal evolution, π/(2N) < t < π/N ,
the plume fluid becomes dense compared to its environment and loses its momentum
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due to the adverse effect of the buoyancy force until collapse occurs at t = π/N . This
extended region of neutrally buoyant fluid is a novel feature of such time-dependent
flows and suggests both a finite time and height of rise of a buoyant plume in a
stratified environment.

Although, for simplicity, in this paper we concentrated on instantaneous reductions
in either source buoyancy or source momentum fluxes and constant buoyancy fre-
quency the governing system of equations allows consideration of more general situa-
tions. When the time scale over which the source conditions are reduced is sufficiently
small compared to the stall time, ts , we have found very similar behaviour. However,
the dynamics of the flow are much more complex when these two time scales are
comparable as the different regions of the flow appear to be more strongly coupled.
Nevertheless, the stall time ts = π/N is still a useful predictor for collapse at some
(typically relatively high) height within the plume.

M.M. S. was funded under NERC award NER/A/S/2002/00892.
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